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ON FINITE AMPLITUDE WAVES AT THE BOUNDARY OF SEPARATION OF TWO FLOWS 

OF A HEAVY IDEAL INCOMPRESSIBLE FLUID" 

A.G. PETROV and A.N. CHUVASHOV 

A planar Cauchy-Poisson problem of the waves at the interface of two 
flows of a heavy ideal incompressible fluid which move at different 
velocities when there is a small homogeneity in the density is 
investigated. A method is proposed which enables one to investigate not 
only travelling and standing waves but also the general Cauchy-Poisson 
problem taking account of the difference in the velocities of the flows. 
The basis of this method is a linear integral relationship which associ- 
ates the value of a harmonic function on the boundary of its derivative. A 
system of integrodifferential equations is obtained for the function 
which determines the profile of the wave and the discontinuity in the 
potential at the ,interface of the flows. The equations of the 
internal waves which have been found are convenient for analytical and 
numerical investigations. It is shown that there is an analogy between 
the linear Cauchy-Poisson problem for the internal waves under 
consideration and waves on the surface of a heavy fluid. Solutions of 
the travelling-wave and standing-wave types are found by expansion in 
series up to the third order of smallness with respect to the wave 
amplitude. 

The problem of travelling internal waves of finite amplitude ,fl, 2/ and an analogous 
problem 131 taking account of the difference in the velocity of the upper and lower flows have 
previously been considered. A solution has been given /4/ of the problem of the free finite 
oscillations of the interface between two unbounded heavy fluids which are at rest at infinity. 

1. FomniLat&m of the proHem ati method of solution. We consider the plane-parallel 
potential wave flows of a heavy ideal incompressible fluid in two semi-infinite domains S2, and 
sd_ which are divided by a periodic curve 

x = 2 (s, t), Y = y (s, t) (I.11 

5 (s + so, t) = h + 5 (s, t), y (s + so, 4 = Y (8, $1 

where s is a parameter which determines the length of an arc of the curve, so is the length 
of the arc for a single period of the wave and h = 2nik is the wavelength. The X-axis is 
directed along the mean level of the boundary of separation, the Y-axis is directed vertically 
upwards and et' c-7 p+ and p_ are the unperturbed velocities and densities of the upper 
flow (the plus index) and the lower flow (the minus index). 

It is assumed that the mean level of the interface does not change, that is, 

The velocity fields v+ and v- in the domains Q+ and Q_respectively can be represented 
in the form 

"+ = e+ + y'p+, "_ = c.. + V$L (4.3) 

where the velocities CT+ and Vq- tend to zero when Y-t+= and Y-+--o0 respect- 

ively and the potentials 'P+ and cp_ have a period h with respect to the variable X. It is 
seen that the mean value of the potentials along a horizontal interval Y = Y, (O,<X,<h) 
is independent of Y 
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h 

g*=_:Srp*(X,Y)dX, d% -_o 
dy= 

0 

(1.4) 

In fact, by differentiating (1.41 with respect to P, we obtain the flow rate of the fluid 
across a horizontal segment, which is equal to zero by virtue of 11.2). Hence, the mean 
constant quantities (p+ and @_ may be considered to be equal to the limiting values of the 
corresponding potentials when Y-+-t, and Y+-CQ. 

Let us project the velocities (1.3) onto the normal n, the components of which are 

n, = -dy/i%, ny = &cl& (1.5) 

and write the conditions for the continuity of the normal velocity v on the boundary 

u = --c+ayias +aq+ian = --c_aytas + d~_ian (f.6) 

The potentials 'P+ and 'P- satisfy Laplace's equation in the domains a+ and Q_ 
respectively and their normal velocities and values on the boundary are therefore connected 
by the linear relationships 

Aacp&,,ian - zhp+ f v, (up* - rpzt) (1.72 

where A and B are linear operators whose form and properties will be indicated in Sect.3. 
Relationships (1.6) and (1.7) are four equations for determining the five functions 0, %+/as, 
+-ids, 'v+ and 'p_ which are defined an a known surface. The missing fifth equation follows 
from the condition for the continuity of the pressure. 

The idea of applying integral relatinships of the type (1.7) has previously been used 
in many papers /5/ and, in particular, for the numerical investigation of waves on the surface 
of a heavy fluid. Below, this method is extended to the study of internal waves. The direct 
implementation of the method is difficult since it requires the solution of a complex system 
of integral equations. In Sect.2, this system is solved analytically for three of the unknown 
functions and a system of two equations in the two remaining functions will therefore be 
obtained. 

2. Solution of the system of integrat eipli?ias. Instead of the functions 'p+ and 'p_ 
and the numbers c, and c_, we introduce cp, f,c and AC using the relationships 

'p* == (G * ‘id, E+ = E & ‘l&c (2.1) 

We substitute expressions (1.6) and (2.1) into system (1.7) 

A [v + (c 4 VrAc) &.&sl -B 1~ + I/j] = i’i, (cp & ‘itf -VT) G=b 

and solve system (2.2) for the functions pi and 'p. 
In order to do this, we introduce the flow functions q_ and $+, which correspond to 

cp- and 'P+, and write the Cauchy-Riemann conditions on the boundary for the ahalytical func- 
tions cp* + i$* 

q,hh = -aip+tan, aq+ian = acp+ias (2.3) 

Relationships (1.7) also hold in the case of 4k and,using (2.31, these can be 
represented in the following form: 

A (aplas ‘f: v,afiad - Blp* = II1 (*+ - k) (2.4) 

It follows from (2.3) and t1.6) that 

a f+_ - +,)/as = -a (C+L - q+)ian = bcagfas (2.5) 

q_ -J?, = Acy -t ;c;- - +,, ++=ll‘f'is (-Aq i ;J7_ - $+) 

By substituting the latter relationship into (2.41, we obtain a system which is analogous 
to (2.2) 

From the systems of Eqs.(2.2) and (2.6), we find 

'p = rp -i_ Bf - AcAaylas, $ = 5 - Aafia8 - AC&Y 

From (1.6) and (2.3), u can be expressed in terms of Ip 

(2.7) 

whereupon we find that 



u+c+=&(A$+AcBY) 
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(2.8) 

When its solutions, which are defined by formulae (2.7) and (2.8), are substituted into 
the system of Eqs.12.2) and (2.6), we obviously obtain the same equalities. The following 

identities, which reveal the link between the A and B and *he properties, follow from this: 

A+A$-BB2f++(f-f)=O (2.9) 

A&Bf+BAz=O 

The identities (2.9) also hold for any functions Y(s) and f (s). 

3. The operators A and B. Let us take the period of the wave motion being considered as 
being equal to 2n. The kernels of the operators A and Bare expressed in terms of Green's 
function W for a semi-infinite strip of width 2n bounded by the curve x (s, t), Y (s, t) with a 
period in x equal to 2n: 

W = 1/z In [2(chg - cos z)] (3.1) 
aw au (8') aw a2(3’) aw 
an' =-~F+-z----- ai 

7=s(s’)--z(s), 8=y(s')-y(s) 

Af = &- 1 Wf (s’) ds’, Bf = & ip$ (f (s’) - f(s)) da 
0 0 

By expanding Green's function in powers of a small parameter 

W=ln 2sin~I+$8P/si'L2$+... 

111 2sin$- =-ccosz--&ccos2.r-....-~cos~~~-... 
I I 

I 

it is possible to find the expansion of the operators in powers of in' in the form 

A=A,+A,+...,B=B,+... (3.2) 

where the index is equal to the order of smallness with respect to F of the corresponding 
integral operator. On substituting expansion (3.2) into (2.9), we get the identities for 
the operators A,,B,, . . . 

A&&$+&f-f)4 A,-&B,f+B,A,g=O (3.3) 

The operator A, is associated with the Hilbert operator H which is well-known in the 
theory of integral operators /6/ 

Hf = &I ctg + f(x’)d.L.’ = --2A& (3.4) 
0 

It should be noted that all of the formulae obtained in Sect.3, extend to the case of 
an aperiodic wave motion with a boundary Y (5, t) and a function f(X,t) defined in an 
infinite interval ~~(-00, m) which satisfy certain smoothness conditions. Here, CJ will 
be a Green's function for the semi-infinite domain: W = V,ln (P + ga). The operators A, and 
Hare: 

4. Dynamical condition. Let us write the Cauchy-Lagrange integral for the lower layer 
of ideal fluid of density p_ at a point on the interface 

ad_~rlnlll--z,f(x,)dx., Hf =g+f(x~)(.T~-z)-‘dx~ (3.5) 
-_ 

Haf = -f, Hf = -2Aj-- 
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P-+,[+- ++(-$y++(+)"+6Y] =b_(t) (4.1) 

Let us now pass to the absolute coordinate system in which the flow has a velocity c_ 

(4.2) 

We now express the derivative a/at at constant Eulerian coordinates in terms of the 
partial derivative al/at at a point which moves along the boundary with a tangential 
velocity u and the derivative with respect to x in terms of the derivatives with respect to 
s and n 

ap- at= 
a$- acp- acp- 

--J-Uas--Uan. 
acp- aq- a+ ace_ ay 

ar=asas--anas 

Whereupon, using (4.21, we get 

a$_ 
at- _2g-u-$+c_$$_2L-(~)1 

(4.3) 

Substituting (4.3) into (4.1) and using (4.2), we obtain an expression for the pressure 
P- in the absolute system of coordinates in terms of a function of the arguments s and t which 
define the position of the point on the boundary of separation of the flows. A similar 
expression also holds for p+ 

(4.4) 

The pressure continuity condition p+ -p_ = 0 yields the following closing equation. 
Subject to the condition that the inhomogeneity in the density is small 

AP~P < 1, P = 'i, (P- + p,). Ap = P_ - p+ 

the pressure continuity equation on the interface takes the form 
(4.5) 

ait 
at- --++(u-~+)++Ac(o+e+)+- 

$(g+Ac$)+Ab 

(4.8) 

By adding the equations for the X, y coordinates of the interface 

and, also, expressions (2.7) and (2.8) for cp and v 

cp=@+Bf-AbeAs, L+- Al$+AcBy-ccy 
( ) (4.8) 

(4.7) 

we obtain the complete system of equations for determining the functions f (1, a z (1, t) and 
y (1, t), where 1(&t) is an arbitrary parameter which determines the position of a point on 
the boundary of separation. The tangential velocity U(l, t) depends on the choice of the 
parameter 2, that is, on the distribution of the points x, y on the boundary. If one starts 
out from considerations of the stability of the numerical scheme, it is advisable /7/ to 
choose 1= s, and the points I, y will then be uniformly distributed along the length. 

We mean by al/at the partial derivative of functions with respect to time for constant 

For the analytical investigation of the problem it is convenient to choose 1=x; then, 
from (4.6) and (4.7) we get a system of equations in the two functions f (xv 1) and y(x, t) 

+++(g)"]-'[($+Ac)(&+)- (4.9) 
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c~+Acc($r-j-++Ab 

au 
at = % 

av x=&(Bf-~de~$) 

I+=-& A$+AcBy-ccy 
( J 

The system of Eqs.(4.9), or system (4.6), (4.7) which is 
Cauchy-Poisson problem for internal waves of finite amplitude 
that Aplp < 1. 

5. The linear Catchy-Poisson problem. By separating the 
y in the system of Eqs.(4.9), we get 

ay 
7=- 

equivalent to it, describes the 
under the single constraint 

terms which are linear in f and 

(5.1) 

acu _ 
at --++, ($=-g+c&) 

where H is a Hilbert operator which is defined according to (3.4) and (3.5). In order to 
obtain the solution of system (5.1), a knowledge of the initial conditions for the functions 
f and y.is required. 

Let us compare the Cauchy-Poisson problem for internal waves, which has been formulated, 
with the analogous problem for surface waves. It is well-known /a/ that, to solve the latter 
problem, it is necessary to find the potential Q which is harmonic in the lower half plane 
Y<O and the function n(X, t) which, when Y = 0, satisfy the conditions 

(5.2) 

The latter equality can be obtained from the integral relationship (2.4) on the boundary 
of the half plane. 

If the velocities of the flows are equal (AC = O), problem (5.1) is equivalent to 
problem (5.2) and, with the substitution 

Q = f/P, t' = tp, c' == c/P, 1, = Y, p = 1/2Ap/p (5.3) 

the solution of the Cauchy-Poisson problem for surface waves yields the solution of the 
problem for internal waves. 

In the general case when Ac# 0, Y can be eliminated from sytem (5.1) and we then get 
an equation for the function f(& t) 

(5.4) 

In a similar manner, it is possible to obtain the same equation for Y (? t). If the 
relationships 

are made use of, it is 
wave and a progressive 
the form 

H (cos kz) = -sin ks, II (sin /cz) = cos kz (5.5) 

possible to obtain the solution of Eq.(5.4) in the form of a standing 
wave. In the coordinate system in which c = 0, these solutions have 

f = sin otcos kz, f = sin (kz - at) (54 

The exact frequency of the linear standing waves is defined by the formula /9/ 

(5.7) 
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which has a difference of the second order of smallness with respect to the parameter *P/P. 

6. Progressive and standing moves. In order to determine the progressive waves in Egs. 
(4.91, it follows that one should put uy = dY/at = 0 and cYf/at = 0, whereupon the system of 

equations then takes the form 

cy-=A$+AcBY (6.1) 

(~+*,)~(*~~~-BJ)--~~~A~(~)~+ 

(AL+gy)(l+(+)l)=O 

The solution of system (6.1), which has been generated by the linear approximation (5.61, 
apart from terms of the third order, has the form 

ky = E cos kx + e2y, cos 2kx + s”y, (--cos ks + cos 3kx) 

c* = co* + E’$ (co3 = q - ‘/,A?, c2 = Vzq -f V,q-‘co2Ac2) 

y, = V,q-'cOAc, y, = 'izc,aAc2q-2 - II5 

q = 'l&'Ap/p 

(6.2) 

An analytical solution of the progressive-,wave type up to the second order of smallness 

with respect to the wave amplitude E was found in /3/, allowing for a shift in the velocity 
of one flow with respect to the other (that is, AcfO in our formulation). Apart from 
the choice of the coordinate system, the solution (6.2) agrees with the solution given in /3/. 

In order to determine the standing waves we put c=o in (4.9) and the system of 
equations takes the form 

The solution of system (6.3) for the wave profile has the form 

ky = E eos ot cos kx + E2y2, sin 2at sin 2kx i- 
9 [(yll cos ot + y,, cos 3ut)cos kr i_ (y,, cos ut + y,, cos 3at) ‘A 

cos 3kzl 

U2 = ‘Jo2 + U2E2 

CT,,"-(q-_tAcz)kz. u,=-~((g-4Ac2+~-'Ac4)k' 

Y,, = l/,y-lk-lAcu 0 
Y 5 

Yll= 64-169 -'A@ + -+AP- & Ac=k'u;' 

1 
y,, = -= + -+ q-'AP + -&Ac~~%;~ 

3 
Yl.3 = -32 9 y,, = - & + + q-2k-2Ac20: 

In the special case when AC = 0, we have 

ky=scosutcoskx+s8[(&cosut-&cos3ut)coskx+ 

(-&sot-&s3u+os3kx] 

oLf+gk-&+gkeZ 

(6.3) 

(6.4) 

(6.5) 

We note that, in expression (6.5) for the wave profile y(s, t), there is no term in e* 

and, moreover, it can be seen from Eqs.(4.9) that, when Ac=O, the wave is symmetrical 
about the abscissa in the main approximation *p/p (( 1. The particular solution of (6.5) 

when AC = 0 agrees with the solution in /4/ where an expansion up to the third order of 
smallness in the parameter 5 = E + ‘/a4EY was carried out. The expansion in series up to the 
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fifth order in a in /lo/ is also found to be in accord with (6.5). 
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LINEAR WAVES IN A FLUID FLOW WITH CONSTANT VORTICITY 
LOCATED UNDER AN ICE BLANKET* 

A.V. MARCHENKO and I.V. PROKHOROV 

The linear dynamics of periodic waves on the surface of a fluid layer of 
finite depth located under an ice blanket which is simulated by an 
elastic plate is considered. The fluid particles in the unperturbed 
state move at a constant horizontal velocity, the profile of which has a 
linear shift along the vertical. It is shown that several type of waves 
exist which propagate at the same frequency. The number of waves 
depends on the frequency, the flow parameters in the fluid and the 
physico-mechanical parameters of the ice blanket. The problem of the 
diffraction of waves of fixed frequency on the edge of a semi-infinite 
elastic,plate which floats on the surface of the fluid is considered. 
The problem is reduced to the solution of Laplace's equation in the 
strip with specified asymptotic forms at infinity and with boundary 
conditions on the sides of the strip which have a discontinuity at a 
point corresponding to the edge of the ice and contact-boundary 
conditions on the edge of the plate. The solution is constructed using 
the Wiener-Hopf method. The reflection and transmission coefficients of 
the waves across the edge of the plate are determined. The results 
obtained are analysed using the actual parameters of sea ice. 

In investigations of the dynamics of waves in a fluid layer with a constant vorticity 
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